TB DRUG DISCOVERY BIOASSAY RESOURCES

Scott Franzblau

Director, Institute for Tuberculosis Research
Professor, Department of Pharmaceutical Sciences

Multiple UIC units support TB drug discovery

Challenges and Solutions in Early-Stage TB Drug Discovery

Challenge	Solution	
Virulence of M. tuberculosis (Mtb) + lack of avirulent surrogate species with similar drug susceptibility	Use virulent but drug-sensitive <i>Mtb</i> Powered Air Purifying Respirators (PAPR) Biosafety Level 3 lab	
Slow growth of <i>Mtb</i> , 3 weeks for colony formation	 Metabolic surrogates of viability: Resazurin reduction (Microplate Alamar Blue Assay; MABA) Luciferase reporter genes Intracellular ATP 	
Early ID of treatment shortening potential	Determine killing of non-growing culture by Low Oxygen Recovery Assay (LORA)	
Mouse models take 1.5 – 2.5 months	qPCR reduces time by 3 weeks	

1st & 2nd Generation Bacterial Luciferase Reporters

Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, et al. (2010) Optimisation of Bioluminescent Reporters for Use with Mycobacteria. PLOS ONE 5(5): e10777.

Phenotypic-based screening: hit ID

In vitro profiling

Phenotypic-based Screening: In vitro Hit Profiling

Property	Assay		
Potential to shorten treatment	MIC vs non-replicating Mtb culture (LORA)		
Killing effect (vs. growth inhibition only)	Minimum bactericidal concentration (MBC)		
Persistent suppression of growth following compound clearance	Post Antibiotic Effect (PAE)		
Ability to kill bacteria within host macrophage	Intramacrophage activity (EC90)		
Synergy or antagonism in combination with established or experimental TB drugs	diaMOND to determine FICs		
Frequency of mutation to resistance and target identification	Selection of resistant mutants and WGS		

Non-Replicating Mtb luxABCDE: Low Oxygen Recovery Assay (LORA)

Cho S, Lee HS, Franzblau S. Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis. Methods Mol Biol. 2015;1285:281-92. PubMed PMID: 25779323.

MBC by CFU vs Bioluminescence Against Replicating M. tuberculosis luxABCDE

Post Antibiotic Effect Can Shed Light On Target Vulnerability

Activity Against Macrophage-Internalized Bioluminescent Mtb

Phenotypic based screening: spectrum of activity

Property	MIC vs	
Cross-resistance to existing TB drugs	H37Rv-isogenic strains mono-resistant to INH, rifampin, ethambutol, kanamycin, bedaquiline, moxifloxacin, etc.	
Effective against clinical isolates from different geographical regions	6 global clade representatives	
Broad or narrow spectrum anti- mycobacterial activity	M. abscessus, M. avium, M. ulcerans, M. bovis, etc.	
Broad or narrow spectrum antibacterial activity	ESKAPE panel of 4 Gram - and 2 Gram + bacteria	

Efficacy in Acute and Chronic Mouse Infection Models of TB

Aerosol infection of ~ 100 female BALB/c mice with low dose of M. tuberculosis Erdman

Acute infection model

Tx begins Day 10

Chronic infection model

Tx begins Day 31

qPCR w PMA dye to reduce time to data by 3 weeks

-) Mice sacrificed 3 days after final dose
- 2) Lung homogenates serially diluted & plated
- 3) Colonies counted after 3 weeks incubation

Target profile of TB drug <u>lead</u>

Assay	ldeal	Acceptable
MIC	<0.1 uM	5 uM
Vero cytotoxicity IC ₅₀	>100 uM	>20 uM
Vero IC ₅₀ /MIC	>1000	>50
LORA/MABA	<5	Any
MBC/MIC	<5	Any
EC ₉₀ vs intramacrophage Mtb	< 1 uM	<20 uM
MIC vs H ₃₇ Rv/drugR strains & global clades	<2x	<8x
MIC vs G+, G-/MIC vs Mtb	>50	>10
MIC with serum or albumin	<4	<20
Combinations (diaMOND)	Synergistic	Not antagonistic
Mouse infection model log ₁₀ lung CFU reduction	3	1